In classical nonrelativistic mechanics

- **Space** is taken (postulated) to be \mathbb{R}^3.
- A particle has $\vec{r} = (x, y, z)$.

- **Time** is a parameter, t, used to measure duration; unit of time defined via some "standard clock" e.g. a sand clock or the Δt^{-1} of some transition in Cesium...

- Space & time are absolute -- exist as an arena for events to unfold

- Both space & time are homogeneous

- Space is isotropic

\[\mathbb{R}^3 \times \mathbb{R}^1 \]

- Laws in past \equiv laws in future

 \[\begin{array}{c}
 \text{physical laws here} = \text{laws here} \\
 \text{"laws" = "equations of motion"} = E = \mathbf{F}, \text{e.g.} \\
 \end{array} \]

- Isotropic:

 Three bodies oriented differently wrt space \equiv same laws given them
An inertial frame is one which is
("frame" = coordinate system)
in relative uniform motion w.r.t. absolute space.

Galilean principle of relativity:

≡ "laws of physics are identical in two inertial frames
(eqs. of motion"

or "Newton's laws hold in all inertial frames"

(most common way of phrasing it)

This class †

Further developments

Einstein, Lorentz, Einstein: no limit on \(v \) : \(v < c \)
(Special Relativity)

⇒ "spacetime" \(\mathbb{R}^{3,1} \)

Einstein
(General Relativity)

: matter & spacetime are
inextricably linked - matter
influences spacetime & v.v.

Quantum Gravity,
(String theory...): spacetime "emergent"