Phy489 Lecture 8
Discrete Transformations: Parity

Parity operation inverts the sign of all spatial coordinates:

Position vector \((x, y, z)\) goes to \((-x, -y, -z)\) \(\text{(eg } P(r) = -r \text{)}\)

Clearly \(P^2 = I\) (so eigenvalues are \(\pm 1\))

Regular (polar) vectors transform in this way under parity transformation

Regular scalars \((a = b \cdot c)\) transform like \(P(a) = a\) \(\text{(e.g. they are unaffected)}\)

However, there are other type of scalars and vectors that transform differently:

Axial-vector (also called pseudo-vector) does not change sign under parity transformation.

\(\text{e.g. cross-product of two polar vectors } \mathbf{L} = \mathbf{r} \times \mathbf{p}, \ \mathbf{B} = \text{curl } \mathbf{A}\)

Pseudo-scalar: \(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}\) does change sign under a parity transformation

\(\text{(here, } \mathbf{a}, \mathbf{b} \text{ and } \mathbf{c} \text{ are all polar vectors)}\)
Parity conservation

Fundamental particles have intrinsic parity: $P^2 = 1$ (so eigenvalues are ± 1)

Quantum Field Theory: the parity of a fermion is opposite to that of its antiparticle
the parity of a boson is the same as its antiparticle

Parity of a composite system is given by the product of the parity of the constituents, with an additional contribution of $(-1)^\ell$ according to the orbital angular momentum ℓ.

Assign positive parity to the quarks, (thus negative parity to the anti-quarks)

Mesons carry parity $(-1)^{\ell+1}$ Baryons carry parity $(+1)^3 \cdot (-1)^\ell = (-1)^\ell$

The parity of individual hadrons is one of the particle properties listed by the PDG

For example, pions have spin 0 and negative parity. They are called pseudoscalar particles.

The ρ also has negative parity. It is called a vector particle (it has spin 1).
\[\pi^\pm \]

\[I_G(J^P) = 1^-(0^-) \]

Mass \(m = 139.57018 \pm 0.00035 \text{ MeV} \) \((S = 1.2)\)
Mean life \(\tau = (2.6033 \pm 0.0005) \times 10^{-8} \text{ s} \) \((S = 1.2)\)
\[c\tau = 7.8045 \text{ m} \]

\[\pi^\pm \rightarrow \ell^\pm \nu \gamma \text{ form factors} \]

\[F_V = 0.0254 \pm 0.0017 \]
\[F_A = 0.0119 \pm 0.0001 \]
\[F_V \text{ slope parameter } a = 0.10 \pm 0.06 \]
\[R = 0.059 \pm 0.009 \]

\(\pi^- \) modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

\(\pi^+ \) DECAY MODES

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Confidence level ((\text{MeV/c}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu^+ \nu_\mu)</td>
<td>([b]) (99.98770 \pm 0.00004)%</td>
<td>30</td>
</tr>
<tr>
<td>(\mu^+ \nu_\mu \gamma)</td>
<td>([c]) ((2.00 \pm 0.25) \times 10^{-4})</td>
<td>30</td>
</tr>
<tr>
<td>(e^+ \nu_e)</td>
<td>([b]) ((1.230 \pm 0.004) \times 10^{-4})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \gamma)</td>
<td>([c]) ((7.39 \pm 0.05) \times 10^{-7})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \pi^0)</td>
<td>((1.036 \pm 0.006) \times 10^{-8})</td>
<td>4</td>
</tr>
<tr>
<td>(e^+ \nu_e e^+ e^-)</td>
<td>((3.2 \pm 0.5) \times 10^{-9})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \nu \bar{\nu})</td>
<td>< 5 \times 10^{-6} (90%)</td>
<td>70</td>
</tr>
</tbody>
</table>

Lepton Family number (\(LF \)) or Lepton number (\(L \)) violating modes

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Lepton Flavour ((LF)) or Lepton Number ((L))</th>
<th>Limit ((\text{MeV/c}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu^+ \bar{\nu}_e)</td>
<td>(L)</td>
<td>([d]) < 1.5 (\times 10^{-3}) (90%)</td>
</tr>
<tr>
<td>(\mu^+ \nu_e)</td>
<td>(LF)</td>
<td>([d]) < 8.0 (\times 10^{-3}) (90%)</td>
</tr>
<tr>
<td>(\mu^- e^+ e^- \nu)</td>
<td>(LF)</td>
<td>(< 1.6 \times 10^{-6}) (90%)</td>
</tr>
</tbody>
</table>
Strange Hadrons: A reminder

In hadron-hadron collisions (such as in bubble chamber experiments) particles were seen which are produced strongly (here in the $K^- p$ collision) but decay over a much longer timescale (i.e. weakly). This lead to the prediction of the strange quark along with the principle that strangeness is conserved in strong interactions.
Prior to 1956, it was believed that “mirror symmetry” was a property of all fundamental interactions: the mirror image of any physics process was also a possible physical process (with same probability).
Parity Violation: the $\theta-\tau$ puzzle

In the early 1950s there was an “odd” experimental observation: two particles with identical mass, spin, charge, lifetime etc, decayed (weakly) into states of opposite parity:

$$\theta \to \pi^+ + \pi^0 \quad (P = +1)$$

$$\tau \to \begin{cases}
\pi^+ + \pi^0 + \pi^0 \\
\pi^+ + \pi^+ + \pi^-
\end{cases} \quad (P = -1)$$

Two hypotheses:

1) there are two particles with identical properties except for parity

2) parity is not conserved in weak interaction

That the weak interaction was somehow special had already been established (for instance the lifetime of “strange” particles, non-conservation of strangeness).

A survey of the literature by Lee and Yang showed there was little experimental evidence for parity conservation in weak decays.
Lee & Yang

Lee and Yang's historic paper, *Question of Parity Conservation in Weak Interactions*

Freeman Dyson, famed particle physicist later wrote:

A copy of it was sent to me and I read it. I read it twice. I said, `This is very interesting,' or words to that effect. But I had not the imagination to say, `By golly, if this is true it opens up a whole new branch of physics.' And I think other physicists, with very few exceptions, at that time were as unimaginative as I.
Parity Violation: Experiment (Madame Wu, 1956)

Beta emission is preferentially in the direction opposite the nuclear spin, in violation of conservation of parity.

Wu, 1957

\[^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \bar{\nu}_e \]

\text{e.g.} \quad n \rightarrow p + e^- + \bar{\nu}_e
Parity Violation

N.B. Spin is an axial vector which does NOT change sign under parity inversion.

Reflect through xy plane (here B and nuclear spin are along z).
\[\vec{p}_e \rightarrow -\vec{p}_e \]
Spin does NOT reflect (it’s a pseudovector)

Parity is NOT conserved in weak decays

\[^{60}\text{Co nuclear spin} \]
\[^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \bar{\nu}_e \]

Electrons preferentially emitted in direction opposite to nuclear spin

Electrons now preferentially emitted in direction of the nuclear spin. This is NOT experimentally observed.
Helicity (Definition)

Useful to define a quantity called helicity:

As choice of z-axis for measurement of the spin component, use the axis defined by the particle velocity:

Helicity defined as m_s/s.

Particle of spin $\frac{1}{2}$ can therefore have helicity of ±1

Helicity +1 is referred to as right-handed

Helicity -1 is referred to as left handed.

Note that helicity is NOT Lorentz invariant unless the particle is massless

If the particle has mass, one can always make Lorentz transformation into an inertial frame with velocity $> v$, and thus “flip” the helicity.
Imagine the decay (at rest) of a charged pion: \(\pi^- \rightarrow \mu^- + \bar{\nu}_\mu \)

The pion has spin 0, so spins of final state particles must be anti-aligned.

Final state particles therefore have the same helicity.

A measurement of the muon helicity therefore gives a measurement of the neutrino helicity (which we have no easy way of measuring directly).

If parity were conserved, in this decay we would expect to see left-handed anti-neutrinos 50% of the time and right-handed anti-neutrinos 50% of the time.

Experimentally \textbf{ONLY} right-handed anti-neutrinos (e.g. as determined from the muon helicity) are observed.
Parity Violation in Weak Decays

All neutrinos are left-handed

All anti-neutrinos are right-handed

This absolute statement is of course not true in the case where neutrinos have mass, which we now know they do.

However, in the rest frame of the pion (as an example) it is still true that the outgoing anti-neutrino is **ALWAYS** right-handed.

We say that parity is maximally violated in weak decays.

(i.e. there are not simply more left-handed neutrinos than right-handed neutrinos. There are NO right-handed neutrinos at all.)

We will see that this parity violation is built into the dynamics of the weak interaction.

Parity operation applied to ν_L gives ν_R which does not exist.

[Momentum vector reverses but spin does not]
Another symmetry operation: inverts all internal quantum numbers while leaving energy, mass, momentum, spin unchanged.

Internal quantum numbers: lepton number, baryon number, strangeness etc.

Charge conjugation takes a particle into its anti-particle.

Most particles are not eigenstates of C (particle would have to be it’s own antiparticle). This is true for photons, and for the central entries in the eightfold way meson nonets (made up of same-flavour $q\bar{q}$ pairs):

\[\pi^0, \eta, \eta', \rho^0, \phi, \omega, J/\psi \]

All are linear combinations of $u\bar{u}, d\bar{d}, s\bar{s}$, or $c\bar{c}$

Being neutral is necessary but not sufficient:

System consisting of a fermion and it’s antiparticle is eigenstate with $C=(-1)^{l+s}$
Charge Conjugation

\[C^2 = I \] Eigenvalues are ± 1, so for a eigenstate \[|x\rangle : \quad C|x\rangle \rightarrow \pm |x\rangle = |\bar{x}\rangle \]

Electromagnetism is invariant under a change in the sign of all charges.

The photon, \(\gamma \), is the quantum of the EM field, which changes sign under \(C \).

Photons “charge conjugation number” is therefore -1.

\(C \) is a multiplicative quantum number (like parity).

System consisting of a spin \(\frac{1}{2} \) particle and its anti-particle, in a configuration with orbital angular momentum \(\ell \) is an eigenstate of \(C \) with eigenvalue \((-1)^{\ell+s} \).
Invariance under C

Strong and electromagnetic interaction are invariant under charge conjugation.

Consider the electromagnetic decay of the neutral pion. The π^0 is the lightest meson and so cannot decay strongly. Instead it decays electromagnetically with branching fraction

$$\text{BR}(\pi^0 \rightarrow \gamma\gamma) = 98.8\% \quad \text{and} \quad \text{mean lifetime} \quad 8 \times 10^{-17} \text{s}$$

C is $+1$ before $[(-1)^0]$ and after $[(-1)(-1)]$ for the photon pair $[(-1)^n$ for n photons]$ so there is no decay to three photons. Similarly, $\omega \rightarrow \pi^0 + \gamma$ but never $\omega \rightarrow \pi^0 + 2\gamma$.

Other implications of charge conjugation invariance (for example): Consider process

$$p + \bar{p} \rightarrow \pi^+ + \pi^- + \pi^0 \quad \text{(strong interaction)}$$

Charge conjugation invariance requires the energy distributions of the two charged pions in the final state must be equal. Why is this?
Charge Conjugation and the Weak Interaction

Charge conjugation is demonstrably NOT a symmetry of the weak interaction.

Consider charge conjugation applied to a neutrino (C leaves helicity unchanged)

$$C|\nu_L\rangle \rightarrow |\bar{\nu}_L\rangle \quad \text{No}!$$

We have already stated that all anti-neutrinos are right-handed so this is an unphysical state. So charge conjugation invariance cannot be respected by the weak interaction.

Note though that the combined operations of charge conjugation and parity inversion take a left handed neutrino into a right-handed anti-neutrino

$$CP|\nu_L\rangle \rightarrow |\bar{\nu}_R\rangle \quad \checkmark$$

(the spin of the neutrino does not transform, but the velocity vector used to define the helicity does).
G Parity (in strong interactions)

Very few particles are eigenstates of the charge conjugation operator C

For strong interactions, can extend C by combining it with an isospin transformation:

Rotation of 180° about I_2 (R_2) takes I_3 into $-I_3$, for example $R_2 \pi^+ \rightarrow \pi^-$

Combining C and R_2 operations: $CR_2 \pi^+ \rightarrow \pi^+$

All mesons composed only of u and d quarks and anti-quarks are eigenstates of this operation which we call G or G-Parity

For particles (u,d mesons) of isospin I, the G-parity number is given by $G = (-1)^I C$

Where C is the charge conjugation number of the neutral member of the multiplet.

$$G(\pi) = (-1)^1(1) = -1$$

This is a useful symmetry in strong interaction for telling how many pions can be emitted in the final state.

ρ ($I = 1$) can only decay to two pions, ω ($I = 0$) only to three)

$$G = (-1)^1(-1) = +1 \quad \text{G} = (-1)^0(-1) = -1$$
\[I^G(J^P) = 1^- (0^-) \]

Mass \(m = 139.57018 \pm 0.00035 \text{ MeV} \) \((S = 1.2)\)
Mean life \(\tau = (2.6033 \pm 0.0005) \times 10^{-8} \text{ s} \) \((S = 1.2)\)
\(c\tau = 7.8045 \text{ m} \)

\[\pi^\pm \rightarrow \ell^\pm \nu \gamma \text{ form factors} \]

\[F_V = 0.0254 \pm 0.0017 \]
\[F_A = 0.0119 \pm 0.0001 \]
\[F_V \text{ slope parameter } a = 0.10 \pm 0.06 \]
\[R = 0.059 \pm 0.009 \]

\(\pi^- \) modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

<table>
<thead>
<tr>
<th>(\pi^+) DECAy MODES</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Confidence level ((\text{MeV/c}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu^+ \nu_\mu)</td>
<td>([b]) ((99.98770 \pm 0.00004)) %</td>
<td>30</td>
</tr>
<tr>
<td>(\mu^+ \nu_\mu \gamma)</td>
<td>([c]) ((2.00 \pm 0.25) \times 10^{-4})</td>
<td>30</td>
</tr>
<tr>
<td>(e^+ \nu_e)</td>
<td>([b]) ((1.230 \pm 0.004) \times 10^{-4})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \gamma)</td>
<td>([c]) ((7.39 \pm 0.05) \times 10^{-7})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \pi^0)</td>
<td>((1.036 \pm 0.006) \times 10^{-8})</td>
<td>4</td>
</tr>
<tr>
<td>(e^+ \nu_e e^+ e^-)</td>
<td>((3.2 \pm 0.5) \times 10^{-9})</td>
<td>70</td>
</tr>
<tr>
<td>(e^+ \nu_e \nu \bar{\nu})</td>
<td>(< 5) \times 10^{-6} 90%</td>
<td>70</td>
</tr>
</tbody>
</table>

Lepton Family number (LF) or Lepton number (L) violating modes

\(\mu^+ \bar{\nu}_e \)	\(L\)	\(< 1.5\)	\(\times 10^{-3} 90\%\)	30
\(\mu^+ \nu_e \)	\(LF\)	\(< 8.0\)	\(\times 10^{-3} 90\%\)	30
\(\mu^- e^+ e^+ \nu \)	\(LF\)	\(< 1.6\)	\(\times 10^{-6} 90\%\)	30
STRANGE MESONS
(S = ±1, C = B = 0)

\[K^+ = u\bar{s}, \ K^0 = d\bar{s}, \ \bar{K}^0 = \bar{d}s, \ K^- = u\bar{s}, \ \text{similarly for} \ K^* \text{'s} \]

\[I(J^P) = \frac{1}{2}(0^-) \]

Mass \(m = 493.677 \pm 0.016 \) MeV [\(S = 2.8 \)]
Mean life \(\tau = (1.2380 \pm 0.0021) \times 10^{-8} \) s [\(S = 1.9 \)]

\(c\tau = 3.712 \) m

\(K^- \) modes are charge conjugates of the modes below.

<table>
<thead>
<tr>
<th>K⁺ DECRY MODES</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Scale factor/Confidence level</th>
<th>(\rho) (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptonic and semileptonic modes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \rightarrow e^+\nu_e)</td>
<td>((1.584 \pm 0.020) \times 10^{-5})</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>(K^+ \rightarrow \mu^+\nu_\mu)</td>
<td>((63.55 \pm 0.11) %)</td>
<td>(S = 1.2)</td>
<td>236</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^0e^+\nu_e)</td>
<td>((5.07 \pm 0.04) %)</td>
<td>(S = 2.1)</td>
<td>228</td>
</tr>
<tr>
<td>Called (K_{e3}^+).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^0\mu^+\nu_\mu)</td>
<td>((3.353 \pm 0.034) %)</td>
<td>(S = 1.8)</td>
<td>215</td>
</tr>
<tr>
<td>Called (K_{\mu3}^+).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^0\pi^0e^+\nu_e)</td>
<td>((2.2 \pm 0.4) \times 10^{-5})</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\pi^-e^+\nu_e)</td>
<td>((4.09 \pm 0.10) \times 10^{-5})</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\pi^-\mu^+\nu_\mu)</td>
<td>((1.4 \pm 0.9) \times 10^{-5})</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^0\pi^0\pi^0e^+\nu_e)</td>
<td>(< 3.5 \times 10^{-6})</td>
<td>(\text{CL} = 90%)</td>
<td>135</td>
</tr>
<tr>
<td>Hadronic modes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\pi^0)</td>
<td>((20.66 \pm 0.08) %)</td>
<td>(S = 1.2)</td>
<td>205</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\pi^0\pi^0)</td>
<td>((1.761 \pm 0.022) %)</td>
<td>(S = 1.1)</td>
<td>133</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\pi^+\pi^-)</td>
<td>((5.59 \pm 0.04) %)</td>
<td>(S = 1.3)</td>
<td>125</td>
</tr>
</tbody>
</table>

No G-parity indicated since not relevant for a state containing any type of quark other than u,d.
Summary of Conservation Laws

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>L</th>
<th>B</th>
<th>J</th>
<th>P</th>
<th>G</th>
<th>C</th>
<th>CP</th>
<th>T</th>
<th>CPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>✓</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Weak</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

Q = electric charge, L = lepton number, B = baryon number, J = spin, P= parity, G = G-parity, C = charge conjugation, T = time reversal

CP, CPT are products

Not included….quark flavour…which is conserved by the strong and electromagnetic interaction and by the neutral weak interaction but not by the charged weak interaction. Also, could add isospin I and third component of isospin I_3 (also, did not include cons. of energy etc).

We will discuss CP, T, and CPT next time.